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Abstract 

Aromatase inhibitors with an IC50 value ranging from 1.4 to 49.7µM are known to act as antiepileptic drugs 

besides being potential breast cancer inhibitors. The aim of the present study is to identify novel antiepileptic 

aromatase inhibitors with higher activity exploiting the ligand-based pharmacophore approach utilizing the 

experimentally known inhibitors. The resultant Hypo1 consists of four features and was further validated by 

using three different strategies. Hypo1 was allowed to screen different databases to identify lead molecules and 

were further subjected to Lipinski‘s Rule of Five and ADMET to establish their drug-like properties. 

Consequently, the obtained 68-screened molecules were subjected to molecular docking by GOLD. Furthermore, 

the compounds with the highest dock scores were assessed for molecular interaction. Later, the MD simulation 

was applied to evaluate the protein backbone stabilities and binding energies adapting GROMACS 5.0.6 and 

MM/PBSA which was followed by the density functional theory (DFT), to analyze their orbital energies and 

further the energy gap between them. Eventually, the number of Hit molecules was culled to three projecting 

Hit1, Hit2, and Hit3 as the potential lead compounds based on their highest dock scores, hydrogen bond 

interaction, lowest energy gap and the least binding energies and stable MD results. 

 

Keywords: Aromatase inhibitors; epilepsy; antiepileptic drugs; molecular docking; MD simulations; density 

functional theory.
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Aromatase Inhibitors (AIs) are the drug molecules 

which have gained a wider recognition for their 

role in the treatment of breast cancer [1]. However, 

these inhibitors are known to be ineffectual in post-

menopausal women. Specifically, the aromatase 

inhibitors exert their action by hindering the 

enzyme aromatase that is considered vital in 

catalyzing the final rate-limiting step during the 

estrogen synthesis [2]. Heretofore, three 

generations of aromatase inhibitors are available 

with aminoglutethimide belonging to the first 

generation. Nevertheless, due to its poor selectivity 

between the CYP450s‘and increased toxic effects, 

it was later withdrawn from being marketed. 

However, it serves as a prototype for the discovery 

of other AIs. The second-generation drugs, 

fadrozole, with an imidazole group, are relatively 

highly selective and more potential upon 

comparison with the first generation AIs, though 

continues to be effective on other CYP450 

enzymes and apparently lack specificity. 

Meanwhile, the third generation drugs were 

developed which demonstrated a higher therapeutic 

index and reduced toxicity in both the early and the 

advanced breast cancer cases [3] [4] [5] and were 

hence, successful in gaining approval from the 

Food and Drug Administration(FDA). The drug 

molecules anastrazole and letrozole that belong to 

the later generation act as competitive inhibitors for 

androstenediene [6] [7] [8]. Aromatase enzymes are 

involved in the synthesis of estrogen by 

aromatizing the ring A of androgens [9] by a three 

step mechanism aided by one mole of NADPH and 

one mole of O2, respectively [10] [11]. Comprising 

of 503 amino acid residues and a haem group, it 

has an androgen specific cleft at its binding site [12] 

and is considered to be one of the most potential 

drug targets for breast cancer incidences and also in 

the hormonal therapy. 

Additionally, it was also noted that AIs have a role 

to be played as an antiepileptic drug (AEDs). 

Currently known AEDs are attributed to several 

negative effects such as depression, birth defects 

and cognitive impairment [13] [14] [15] [16]. This 

warrants the necessity for the development and 

designing of more effective and less toxic AEDs 

and further focuses the research towards the 

development and designing of novel drug 

molecules. 

Several reports exist which emphasize on the use of 

AIs in treating epilepsy [13] [14] [15] [16] [17] [18] 

[19]. In fact, in the epileptic males, the levels of 

estradiol were observed to be reasonably higher 

which also reinforces the clinical studies [13] [20]. 

Moreover, AIs were employed to treat men with 

sexual and reproductive dysfunctions [21] [22] [23]. 

Nevertheless, the seizure recurrence remains 

common between both the genders. Besides these, 

estrogen has an ability to enhance the neural 

membrane excitability, seizure discharges and can 

also reduce the seizure threshold, pronouncing 

oestrogens as epileptogenic [24] [25]. Indeed, 

considering everything, the relationship between 

oestrogens and epilepsy can be vindicated and the 

screening of efficient AIs could simultaneously 

lead to the identification of novel AEDs. Currently 

the AIs that exhibit an IC50 values ranging between 

1.4 to 49.7µM are used as antiepileptic drugs. 

Therefore, the objective of the present study is to 

perform ligand -based pharmacophore search to 

identify potential lead molecules against aromatase 

that could be beneficial in treating both the breast 

cancer and the epilepsy.  

2 Materials and methods 

In order to retrieve the potential lead candidates, 

the ligand based pharmacophore approach was 

adapted and the methodology is depicted in figure 

1. 

 

Figure 1. Pictorial representation of the overall 

methodology employed. 

2.1 Preparation of the dataset 

Selection of the compounds for the subsequent 

generation of the pharmacophore is the most 

important avenue in drug designing. For the current 

investigation, 47 compounds were preferred which 

exhibited a wide range of inhibitory activities 

reported from the literature  [26] [27] [28] [29] 

[30] [31] [32] and were grouped as the dataset. The 

selection of these 47 compounds was performed in 

a systematic manner. The compounds were initially 

checked for the duplicates and were subsequently 

deleted in order to avoid the repetition of the 
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compound and further to produce accurate results. 

Furthermore, based upon the range of IC50 values 

they exhibited and the structural diversity, they 

were further grouped in the training set and test set 

[33]. Additionally, the training set compounds 

should represent the broad class of compounds by 

demonstrating structural diversity and an activity 

range of four order magnitudes. For the generation 

of the 3D QSAR pharmacophore, a minimum of 16 

compounds were to be present in the training set. 

Additionally, the most active compounds have to be 

included into the training set. Accordingly, 47 

compounds were thus, divided into the training set 

and the test set compounds. The test set was chosen 

employing the same protocol as the training set. 

Test set consisted of 28 compounds that exhibited a 

range of activity values [33] and structurally 

diverse from the training set.  Training set 

constituted 19 assorted compounds with inhibitory 

activities (IC50) ranging from 0.5 nmol/L to 18,000 

nmol/L, figure 2. The test set comprised of the 

remaining 28 compounds that were structurally 

distinct from the training set. The training set 

compounds and the test set compounds were 

further classified based upon their IC50 values. The 

compounds that displayed an inhibitory activities 

less than or equal to 100 nmol/L were labeled as 

most active compounds (+++), compounds 

displaying an activity range between 100 nmol/L 

and 6,500 nmol/L were grouped into moderately 

active compounds (++) and the compounds with 

the IC50 value above 6,500 nmol/L were labelled as 

least active compounds (+). The rationale behind 

this is that the training set was employed to 

generate a pharmacophore model, while the test set 

was enrolled to further validate it. The 2D 

structures were illustrated by means of 

ChemSketch 

(http://www.acdlabs.com/resources/freeware/chems

ketch/) [34] and were eventually converted to their 

3D structures on the Discovery Studio (DS) v4.5. 

2.2 Generation of the pharmacophore model 

The 3D QSAR pharmacophore was generated 

based on the activity values of the training set 

compounds utilizing the Catalyst HypoGen 

algorithm [35] available on the Discovery Studio 

v4.5 (DS, www.accelrys.com, USA) that could 

evidently generate conformations of lower energy 

rendered by the Best algorithm, provided, the 

energy threshold value and the uncertainty value 

were fixed to 20 kcal/mol [33] and 3, respectively, 

retaining the other parameters as default. Adapting 

the Feature Mapping protocol present on the DS 

that critically probes into the crucial chemical 

features that exists within the training set, was 

exploited to develop the hypothesis with maximum 

features of five and a minimum of zero. However, 

relies on the hydrogen bond donors (HBD), 

hydrogen bond acceptor (HBA), hydrophobic 

aliphatic (Hy-Ali), hydrophobic regions (HyP) and 

ring aromatic (RA) which were harvested in the 

generation of 10 qualitative hypothesis along with 

their statistical parameters. The best and the 

efficient pharmacophore was analyzed according to 

the Debnath‘s method [36]. 

2.3 Validation of the hypothesis 

Statistically unique pharmacophore model should 

precisely predict the activity of the molecules with 

an aptness of retrieving the active compounds from 

the databases. The best pharmacophore model was 

evaluated and checked employing the Fischer‘s 

randomization, test set and decoy set methods, 

respectively. The fundamental idea behind 

validating the pharmacophore model was to 

ascertain its ability to discriminate the active 

compounds coupled with its predictive ability 

towards the corresponding molecules. Moreover, 

this method nullifies the chance correlation while 

the generation of the pharmacophore model and 

further secures that the model was not generated 

randomly. In Fischer‘s randomization method, 95% 

confidence was selected and was run alongside the 

hypothesis generating 19 random spreadsheets. The 

test set and the decoy set validations were 

employed to assess if the generated pharmacophore 

model was able to choose the molecules based 

upon their activities corresponding to the training 

set active molecules, which distinguishes potential 

inhibitors from the other compounds. The test set 

comprises of about 28 structurally variant chemical 

compounds to ensure the predictability of the 

pharmacophore. The decoy set was formulated by 

calculating the 1D property of 8 active compounds 

among 782 unknown inactive compounds and 

subsequently, their Enrichment Factor (EF) and the 

Goodness of Hit (GH) values were calculated by 

applying the formulae 

𝐸𝐹 =  
𝐻𝑎

𝐻𝑡
 ÷  

𝐴

𝐷
  

𝐺𝐻 =   
𝐻𝑎

4𝐻𝑡𝐴
  (3𝐴 + 𝐻𝑡)  × [1 −  𝐻𝑡 − 𝐻𝑎 

÷  𝐷 − 𝐴 ] 

The generated model was considered good, if it‘s 

GH value ranges between 0.6-0.8 [37] [38] . Here, 

Ha refers to the total number of active compounds, 

Ht indicates the retrieval number of Hits from the 

database, A denotes the total number of active 

compounds in the database, and D represents the 

http://www.acdlabs.com/resources/freeware/chemsketch/
http://www.acdlabs.com/resources/freeware/chemsketch/
http://www.acdlabs.com/resources/freeware/chemsketch/
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total number of molecules in the database. The 

Ligand Pharmacophore Mapping module available 

on the DS, preferring the Best algorithm and the 

Flexible fit options were employed.  

2.4 Virtual screening of the databases for 

retrieving the lead candidates 

Pharmacophore-based database screening was 

pursued to determine the novel lead compounds 

that could inhibit aromatase. It is mightily essential 

to use the pharmacophore model that imbibes the 

chemical and functional qualities required by the 

potential prospective drugs and hence can be 

deployed for screening novel drugs. Four chemical 

databases were thus screened, taking the validated 

pharmacophore model as a 3D query. Herein, the 

databases screened were NCI, Asinex, Chembridge, 

and Maybridge. The Ligand Pharmacophore 

Mapping protocol implemented on the DS was 

employed for screening the databases electing the 

Fast Flexible search method. The retrieved 

molecules from the databases should be probed for 

obeying the requirements of the chemical moieties 

and further, should equate with the features present 

within the 3D query molecule. 

2.5 Drug-likeness prediction 

In order to ensure the retrieved compounds 

possesse good pharmacokinetics properties, all the 

Hit compounds were subjected to ADMET and 

Rule of Five (RoF) developed by Lipinski. The 

predominant motive behind the ADMET is to 

access if the compounds were able to pass across 

the Blood – Brain – Barrier (BBB), exhibits low 

toxicity, good solubility and good human intestinal 

absorption. Moreover, it has to be noted that the 

bioavailability, ability to penetrate through the 

BBB and low hepatotoxicity are pivotal filters 

while addressing the drugs in connection with the 

central nervous system. Additionally, the Lipinski‘s 

Rule of Five [39] quantifies a drug to be well 

absorbed when it has a molecular weight ≤ 500, 

number of hydrogen bond acceptors ≤ 10, 

hydrogen bond donors ≤ 5 and logP ≤ 5. All those 

compounds, which satisfied these properties, were 

subjected to molecular docking mechanism. 

2.6 Molecular docking mechanism 

Ligand- based molecular docking has emerged as 

the most promising tool in the field of drug 

discovery and designing. This method allows the 

ligand molecule to bind in the active site space 

available within the protein. Thereon, the protein 

ligand interactions were evaluated by different 

scoring functions. Generally, docking delineates on 

all the information of the protein and eventually 

estimates their binding affinities. For the present 

investigation, the docking program Genetic 

Optimization for Ligand Docking (GOLD) [40] [41] 

was adapted which operates on genetic algorithm. 

For the target structure, the aromatase with PDB ID: 

3EQM complexed with 4-anderostene-3-17-dione 

was downloaded from the protein data bank 

(www.rcbs.org). The protein was prepared by 

removing all the water molecules and the addition 

of hydrogen atoms. Further, the protein was 

subjected to ―minimization‖ with CHARMm force 

field after performing the ―clean protein‖ 

accessible on the DS. The training set molecules 

along with the 68 screened compounds were also 

prepared for docking by subjecting them to 

minimization. The protein binding sites were 

determined across all the atoms that fall within the 

radius 15Å around the 4-anderostene-3-17-dione. 

For expounding the binding affinities between the 

protein and the ligand, the GoldScore was used, 

while the ChemScore was recruited for rescoring. 

For each ligand, 50 poses were allowed to be 

generated and were selected based upon the highest 

GoldScore. Withal, the generated docked poses 

were also examined for their molecular interactions 

and the hydrogen bonds between the ligand and the 

binding sites to secure the potential Hits. 

2.7 Molecular dynamics simulations 

MD simulations were performed employing 

GROMACS 5.0.6 using CHARMm27 force field, 

[42] [43] for the reference and the Hit compounds 

obtained from the docking studies. The ligand 

topologies were generated recruiting SwissParam 

[44] and the system was solvated with TIP3P water 

model in a dodecahedron box as described earlier 

[37][45]. Further, the counter ions were added to 

neutralize the systems. The bad contacts were 

removed by energy minimization using steepest 

descent algorithm and subsequently equilibration 

processes were conducted employing NVT 

(Berendsen thermostat) and the NPT during which 

the Parrinello-Rahman barostat was utilized to 

maintain the pressure [46] [47]. During the 

equilibration process, the solvent molecules were 

allowed to move while the protein backbone was 

restrained. Furthermore, to constrain the bond 

length and to maintain the geometry of the 

molecule, LINCS algorithm [48] was employed 

while SETTLE algorithm [49] was applied to 

constrain the geometry of the water molecules [49]. 

Particle Mesh Ewald (PME) [50] was recruited to 

calculate the long range electrostatic interactions, 

adjusting the cut-off distance of 9 Å and 10 Å for 

Coulombic and van der Waals interactions, 

http://www.rcbs.org/
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respectively. Additionally, the periodic boundary 

conditions were implemented to avoid edge effects.  

The time step of 2 fs was used throughout the 

simulation and coordinate data was stored at every 

picosecond (ps). All the analysis of MD 

simulations was carried out by VMD [51] and DS 

software. 

2.8 Binding free energy calculations 

Molecular Mechanics/Poisson–Boltzmann Surface 

Area (MM/ PBSA) methodology has been 

employed for calculating the binding free energy 

(ΔGbind) of a given system retrieving 30 snapshots. 

For the current study, the methodology for 

calculating the MM/PBSA was computed as 

delineated earlier [52] [53] [54].  

The binding free energy for protein ligand complex 

in the solvent was represented as  

ΔGbinding = Gcomplex – (Gprotein + Gligand) 

Herein, Gcomplex refers to the total free energy of the 

complex and Gprotein  and  Gligand  indicates the 

separate protein and ligand in the solvent. Their 

free energies can be computed by 

GX = EMM + Gsolvation 

Where, X can be a protein, ligand or its complex. 

EMM represents the average molecular mechanics 

potential energy in vacuum, while the Gsolvation 

interprets the free energy present in the solvation. 

Additionally, molecular mechanics potential energy 

in vacuum can be evaluated by adapting the 

equation 

EMM = Ebonded + Enon-bonded = Ebonded + (Evdw 

+ Eelec) 

Ebonded represents the  bonded  interactions, while 

the non-bonded interactions were denoted by Enon-

bonded.  ΔEbonded is generally regarded as zero [55]. 

The solvation free energy (Gsolvation) was expressed 

by the sum of electrostatic solvation free energy 

(Gpolar) and apolar solvation free energy (Gnon-polar) 

and is given as following  

Gsolvation = Gpolar + Gnon-polar 

 

Gpolar is computed recruiting the Poisson-

Boltzmann (PB) equation [56] while Gnon-polar is 

computed from the solvent-accessible surface area 

(SASA) and can be written as below 

Gnon_polar = γSASA + b 

Here, the γ is the coefficient of the surface tension 

of the solvent, whereas, b is its fitting parameter, 

whose values are 0.02267 kJ/mol/Å
2
 or 0.0054 

kcal/mol/Å
2 

and 3.849 kJ/mol or 0.916 kcal/mol, 

respectively. 

2.9 Density functional theory 

MD optimized systems were forwarded to density 

functional theory (DFT) studies. DFT by far is the 

most logical and highly productive methods for 

calculating the orbital energies[56] in terms of 

Highest Occupied Molecular Orbital (HOMO) and 

Lowest Unoccupied Molecular Orbital (LUMO). 

Additionally, it was also noted that the ionization 

potential (electron donor) was governed by the 

HOMO, while the electron affinity (electron 

acceptor) by LUMO. The preferred MD optimized 

structures along with the known inhibitors were 

subjected to DFT that was utilized to explore the 

energy transfer and stability of small molecules in 

the binding site. A lower energy gap between the 

Hit molecules demonstrates that the molecules are 

highly reactive while the high-energy gap implies 

low reactivity. The Dmol3 and B3LYP, with DNP 

basis set with SCF density convergence of 1.0e-6 

that was available on the DS were employed for 

computing the energy values.  

3 Results 

Generation of the ligand-based pharmacophore 

model is credited with one of the most beneficial 

techniques in the development of novel drug 

molecules. Conventionally, the ligand-based 

pharmacophore model development works by 

considering the common features that exist in their 

3D structures, provided, they are known to bind 

with their respective target macromolecule. 

However, this is feasible only when the molecules 

are enumerated, and most importantly, this 

approach discloses the common features that exist 

within the diverse ligands that could be recruited as 

a 3D query for the establishment of new Hit 

compounds. 

3.1 Generation of HypoGen based 

pharmacophore model 

HypoGen algorithm, accessible on the DS was 

employed for the generation of the pharmacophore 

model, which ably analogizes with the chemical 

structures of the aromatase inhibitors to their 

corresponding biological activities. The training set 

composed of 19 compounds, figure 2, were utilized 

for the pharmacophore generation, which 

comprised of varied activity ranges between 0.5 

nmol/L -18000 nmol/L. The 3D QSAR 

pharmacophore generation protocol available on 

the DS was selected with the preferred features 

being HBA, HyP, RA, HY-Ali and HBD. Selecting 

these features, the pharmacophore run was initiated 
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and towards the end of the run, 10 pharmacophore 

hypotheses were generated. Amongst which, the 

pharmacophore model Hypo1 was chosen as the 

best hypothesis based on Debnath‘s analysis, such 

as the high cost difference 54.32, good correlation 

coefficient of 0.965, least RMSD 0.7 and a good fit 

value of 8.4 with four features namely 2HBA, HyP 

and RA, figure 3A. Herein, table1, the RMSD 

value refers to the variation that exists between the 

predicted activity values from that of the 

experimental value. The cost difference depicts the 

difference between the null and total cost of 

hypothesis. Besides these, the correlation 

coefficient relies on the linear regression, the 

greater is the predictive capacity, when lower the 

RMSD, less is the divergence between the 

predictive activity from that of the experimental 

activity. Accordingly, Hypo1 was preferred to 

evaluate the inhibitory activities of the training set 

compound. The most active compound IC50= 0.5 

nmol/L and the least active compound IC50= 18000 

nmol/L of the training set have aligned with four 

and three features of the Hypo1 correspondingly, 

figure 3B and 3C. 

 

Figure 2. 2D Structures of 19 training set 

compounds with their corresponding IC50 values 

(nmol/L) in parenthesis. 

Table: 1. Statistical and predictive significance 

presented in cost values for top 10 hypotheses 

generated due to 3D QSAR pharmacophore 

modelling. 

Hypo 
no 

Total 
Cost 

Cost 

differe

nce1 

RM
SD 

Correla
tion 

Features2 Max 
Fit 

Hypo
1 

89.1
9 

54.32 0.7 0.96 2HBA, HyP, RA 8.4 

Hypo 

2 

90.4 53.09 0.8 0.96 2HBA,HyP,RA, 

Hy-Ali 

9.1 

Hypo 

3 

91.6

5 

51.87 0.9 0.94 2HBA,Hy-Ali, 

RA 

7.4 

Hypo 
4 

91.6
8 

51.83 0.8 0.95 2HBA,HyP, RA 9.0 

Hypo 

5 

92.0

5 

51.47 0.8 0.95 2HBA,Hy-Ali, 

RA 

9.5 

Hypo 

6 

92.3

0 

51.21 0.9 0.94 2HBA,Hy-Ali, 

RA 

8.7 

Hypo 

7 

92.7

9 

50.73 0.9 0.94 2HBA,Hy-Ali, 

RA 

8.5 

Hypo 
8 

93.1
9 

50.33 0.9 0.94 2HBA,HyP, RA 9.1 

Hypo 

9 

93.3

0 

50.21 1.0 0.93 2HBA,HyP, RA 8.4 

Hypo

10 

93.3

9 

50.12 0.9 0.93 2HBA,HyP,RA, 

Hy-Ali 

8.9 

 

1

Cost difference between the null and the total cost. 

The null cost, the fixed cost and the configuration 

cost were found to be 143.52, 83.73 and 18.68, 

respectively. 
2 

HB- Hydrogen Bond, HyP- Hydrophobic, RA- 

Ring Aromatic, Hy-Ali-Hydrophobic Aliphatic. 

Furthermore, Hypo1 could successfully predict the 

inhibitory activities of the compounds present in 

the training set, table 2. Based upon their activity 

values, the training set compounds were classified. 

The compounds that displayed an inhibitory 

activities less than or equal to 100 nmol/L were 

labeled as most active compounds (+++), 

compounds displaying an activity range 

between100 nmol/L and 6,500 nmol/L were 

grouped into moderately active compounds (++) 

and the compounds with the IC50 above 6,500 

nmol/L were labelled as least active compounds (+). 

However, it was noticed that the two least active 

compounds were over estimated as moderately 

active and two moderately active compounds were 

underestimated as least active compounds. 

Nevertheless, the inhibitory values of all the active 

compounds were envisaged in the same order of 

magnitude. Thus, Hypo1 successfully estimated the 

activities of the compounds present in the training 

set. Thereafter, to assess the robustness of the 

pharmacophore model, it was further subjected to 

multiple methods of validations such as the test set 

method, Fischer‘s randomization and decoy set 

method. 

Table 2. Experimental and predicted activity of the 

19 training set molecules based on the 

pharmacophore model Hypo1 

 

 

 

 

No 
Fit 

Val 

ExpIC
50 

nmol/L 

PreIC
50 

nmol/L 
Errora 

Exp 
Scal

e 

Pred 

Scaleb 
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1 8.37 0.5 0.36 -1.4 +++ +++ 

2 7.7 0.82 1.7 2.1 +++ +++ 

3 6 22 86 3.9 +++ +++ 

4 5.68 42 180 4.3 +++ ++ 

5 6.33 44 40 -1.1 +++ +++ 

6 6.26 96 47 -2 +++ +++ 

7 5.7 530 170 -3.1 ++ ++ 

8 5.12 1700 650 -2.6 ++ ++ 

9 4.23 2100 5100 2.4 ++ ++ 

10 4.01 3500 8500 2.4 ++ + 

11 3.99 4000 8700 2.2 ++ + 

12 4.19 4800 5500 1.1 ++ ++ 

13 4.2 6600 5400 -1.2 ++ ++ 

14 4.24 7400 4900 -1.5 ++ ++ 

15 4.09 9100 6900 -1.3 + ++ 

16 4.24 10000 4900 -2 + ++ 

17 4.24 12000 4900 -2.5 + ++ 

18 3.53 13000 25000 2 + + 

19 4.2 18000 15400 -3.3 + + 
 

a
Error, ratio of the predicted activity (Pred IC50) to 

the experimental activity (Exp IC50) or its negative 

inverse if the ratio is <1 

b
IC50 values ≤ 100 nmol/L are most active (+++), 

IC50 values between 100 nmol/L ~ 6,500 nmol/L are 

moderately active (++) and IC50 values > 6,500 

nmol/L are least active compounds (+). 

 

 

Figure 3. Selected pharmacophore, Hypo 1 with its 

features. Figure 3A demonstrates the best 

pharmacophore model with its corresponding 

geometry with four features, Green-Hydrogen bond 

acceptor, HBA (2); Cyan- Hydrophobic, HP (1); 

Orange- Aromatic Ring, RA (1). Figure 3B 

represents the mapping of best pharmacophore 

model Hypo1 to the most active compound (IC50 

0.5nmol/L) in the training set. The compound was 

seen to align with four features 2HBA, 1HP, and 

1RA. Figure 3C refers to the most inactive 

compound (IC50-18,000 nmol/L) from the training 

set. The compound was found to align with only 

three features, 1HBA, 1HP and 1RA. 

3.2 Validation of Hypo1 

The significance of each of the generated 

pharmacophore model, Hypo1, was estimated by 

test set, Fischer‘s randomization and decoy set 

method. 

3.2.1 Test set method 

28 structurally distinct compounds from the dataset, 

apart from the training set compounds were 

grouped into test set. The fundamental necessity of 

the test set is to probe into the ability of the Hypo1 

in assessing the external compounds with the same 

activity range. It was however noticed that, one 

active compound and one moderately active 

compound were underestimated as moderately 

active and least active compounds, respectively 

table 3 and figure 4A, repeating the protocol used 

for training set compounds. The correlation 

coefficient (r) was calculated to be 0.94 and was 

categorized on the similar basis as that of the 

training set. The test set validation is an indicative 

of the fact that Hypo1 could judge the active 

compounds from the moderately active and the 

inactive compounds. 

Table 3. Experimental and predicted IC50 values of 

28 test set molecules using Hypo1 
No Fit 

Val 

Exp 

IC50 

nmol/L 

Pred 

IC50 

nmol/L 

Errora Exp 

 Scale 

Pred  

Scaleb 

1 7.41 2.3 8.5 3.7 +++ +++ 

2 7.01 17 21 1.3 +++ +++ 

3 7.24 20 13 -1.6 +++ +++ 

4 7.01 30 21 -1.4 +++ +++ 

5 5.76 37 380 10 +++ ++ 

6 6.83 39 33 -1.2 +++ +++ 

7 6.87 40 30 -1.3 +++ +++ 

8 6.64 44 51 1.2 +++ +++ 

9 5.25 530 1200 2.3 ++ ++ 

10 5.54 550 640 1.2 ++ ++ 

11 5.49 570 710 1.2 ++ ++ 

12 5.57 590 590 1 ++ ++ 

13 5.58 600 580 -1 ++ ++ 
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14 5.59 600 570 -1.1 ++ ++ 

15 5.55 1000 620 -1.6 ++ ++ 

16 5.56 1100 610 -1.9 ++ ++ 

17 5.15 1200 1600 1.3 ++ ++ 

18 5.19 4700 1400 -3.3 ++ ++ 

19 4.12 5100 17000 3.2 ++ + 

20 4.56 5700 6000 1.1 ++ ++ 

21 4.81 6000 3400 -1.8 ++ ++ 

22 4.17 6700 15000 2.2 + + 

23 4.63 6800 5100 -1.3 + + 

24 4.81 7100 3400 -2.1 + ++ 

25 4.32 7800 11000 1.3 + + 

26 5.38 9200 930 -9.9 + ++ 

27 4.33 13000 10000 -1.2 + + 

28 4.11 18000 17000 -1.1 + + 

 
a
Error, ratio of the predicted activity (Pred IC50) to 

the experimental activity (Exp IC50) or its negative 

inverse if the ratio is <1 

b
IC50 values ≤ 100 nmol/L are most active (+++), 

IC50 values between 100 nmol/L ~ 6,500 nmol/L are 

moderately active (++) and IC50 values > 6,500 

nmol/L are least active compounds (+). 

3.2.2 Fischer’s randomization method 

In order to statistically validate Hypo1, Fischer‘s 

randomization method was performed preferring 

the confidence level of 95%. Consequently, 19 

random spreadsheets were produced and the 

magnitude of hypothesis was calculated adapting 

the formula  

S= [1-(1+X) /Y] X100 

Where, ‗X‘ refers to the total hypothesis possessing 

total cost lower than the actual hypothesis. ‗Y‘ 

refers to the total number of HypoGen runs (initial+ 

random) 

Upon comparing the Hypo1 with the total cost of 

19 random, it was understood that Hypo1 was of 

far finer quality and was not generated by chance, 

figure 4B and suggests that Hypo1 could be 

imbibed with all the essential features required to 

inhibit the aromatase activity. 

 

Figure 4. Validation of the pharmacophore model, 

Hypo1. Figure 4A refers to the correlation plot as 

predicted by Hypo1 between experimental and the 

predicted activities of the training set and the test 

set compounds. Figure 4B evaluates the difference 

in cost between 19 scrambled runs selecting 95% 

confidence level. Hypo1 had displayed a lower cost 

value. 

3.2.3 Decoy set validation 

As an eventual and conclusive validation, the 

decoy set method was performed, recruiting the 

―best flexible” module on the DS. With an aim of 

assessing the effectiveness of the Hypo1, different 

parameters were recorded, such as, the enrichment 

factor (EF) [38], goodness of fit score (GF), false 

positives and false negatives, respectively. The GH 

and the EF were calculated taking into account, the 

Hits (Ht), number of actives percent yield (%Y), 

false positives, false negatives and the percentage 

ratio of actives in the retrieved Hit lists (%A). The 

GF and the EF scores were calculated to be 0.61 

and 69.8, respectively, which bespeaks the ability 

[57] of Hypo1 towards recognizing the true 

positives, table 4. 

Table 4. Decoy set parameters employed to validate 

the pharmacophore model Hypo1. 

Parameters Values 

Total number of molecules in 

database (D) 
782 

Total number of actives in 

database (A) 
8 

Total number of Hit molecules 

from the database (Ht) 
7 



1545-5963 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2018.2855138,
IEEE/ACM Transactions on Computational Biology and Bioinformatics

Page 9 of 17 

 

Total number of active 

molecules in Hit list (Ha) 
5 

% Yield of active [(Ha/Ht) X 

100] 
71.4 

% Ratio of actives [(Ha/A) X 

100] 
62.5 

Enrichment Factor (EF) 69.8 

False negatives (A-Ha) 3 

False Positives (Ht–Ha) 2 

Goodness of fit score (GF) 0.61 

 

3.3 Virtual screening and ADMET studies 

Using the validated pharmacophore as a 3D query, 

screening for the novel scaffolds was performed 

across different databases such as Chembridge, 

Maybridge, Asinex and NCI comprising of 50000, 

59652, 213262 and 238819 compounds each. 

Those compounds with a fitness value of > 8 were 

subjected to Lipinski‘s Rule of Five and ADMET 

studies. ADMET studies were conducted to 

delineate on the pharmacokinetic properties of a 

drug within the human body, as well as the values 

correspond to the Blood Brain Barrier penetration 

(BBB), solubility, hepatotoxicity, human intestinal 

absorption (HIA), cytochrome P450, 2D6 

inhibition and plasma protein binding (PPB). The 

highest values selected correspondingly for BBB, 

solubility and absorption were 3, 3, and 0. Those 

molecules that qualified the ADMET were 

proceeded further to Lipinski‘s Rule of Five which 

ensures a given molecule has less than 5 logP, 

molecular weight of less than 500, less than 5 

hydrogen bond donors and less than 10 hydrogen 

bond acceptors, with rotatable bonds less than 10. 

Eventually, the procured 68 filtered molecules, 

figure 5, were further subjected to the molecular 

docking studies. 

 

Figure 5. Schematic representation of virtual 

screening of the databases. Different filters were 

employed to redeem the most efficient dug-like 

candidate compounds.  

3.4 Molecular docking mechanism 

Training set compounds along with 68 screened 

compounds retrieved after virtual screening were 

subjected to the molecular docking mechanism 

using ―Genetic Optimization for Ligand Docking‖ 

(GOLD). This is one of the potential molecular 

docking techniques available currently that can 

perform screening, lead optimization along with an 

ability to identify precise binding modes of active 

molecules, and renders high consistency in 

performance when subjected to a wide range of 

receptor types. Molecular docking was carried out 

using the default parameters, however, the active 

site radius was set to 15Å, around the crystal 

structure with 50 conformations generated and 

saved for each ligand. GOLD operates by 

GoldScore fitness function, while the ChemScore 

was used as the rescoring function. For the present 

study, the protein 3EQM was imported onto the DS 

from Protein Data Bank which had a resolution of 

2.0Å. Hereinafter, for analyzing the dock results, 

the most active compound from the training set was 

labeled as the reference compound. Hit molecules 

were evaluated for the hydrogen bond interactions 

with amino acid residues such as Arg115, Ala306, 

Asp309, Val370, Leu372, Met374, and Leu477, 

respectively. Interactions apart from the 

aforementioned residues were ignored, a process 

adapted to identify the superlative potential leads. 

Following this, the compounds that generated a 

GoldScore above 59.74 were considered for further 

evaluation as their scores were noted to be above 

the reference compound. Furthermore, the 

reference compound had demonstrated a 

Chemscore of -13.5. ChemScore was employed as 

the rescoring function that effectively evaluates the 

free energy change upon the ligand binding. 

Accordingly, the lead compounds were chosen 

based upon the highest GOLD score and lowest 

Chemscore as compared to the reference molecule, 

table 5, along with an appropriate ligand 

conformation that displays interactions with the 

active site residues. Subsequently, three Hits were 

selected as they fulfilled the aforementioned 

criteria and were found to map well with the 

pharmacophore, figure 6A. 
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Figure 6A Mapping of Hypo1 onto the Hit 

compounds (Hit, Hit2, and Hit3). The Hits have 

mapped with all the features of Hypo1. Figure 6B 

MM/PBSA binding free energy calculations of the 

Hits and reference compound. The Hits have 

rendered lower binding energy than the reference 

compound. 

Table 5. Molecular Docking results, Hit molecules 

with the highest dock scores than the most active 

reference compound. 

Systems 
Gold fitness 

score 
Chemscore 

Protein 

Reference 

59.74 -13.5 

Protein+Hit1 73.37 -13.3 

Protein+Hit2 73.20 -18.6 

Protein+Hit3 70.84 -14.6 

 

3.5 Molecular Dynamics simulations 

MD simulations were initiated for four systems 

considering the best docked conformations as the 

initial structures so as to understand their 

conformational alteration, their binding stability 

and further their behaviour in the active site and 

was conducted for 30 ns. The protein stability 

during the simulations were monitored through the 

RMSD and potential energy of the corresponding 

systems. The RMSD values were found to be 

between 0.12 nm and 0.27 nm throughout the 

simulation, implying that the systems were 

converged optimally. The average RMSD were 

recorded to be 0.2 nm, 0.22 nm, 0.24 and 0.24 nm 

respectively for the reference, Hit1, Hit2 and Hit3, 

figure 7A. The potential energy demonstrates 

similar results portraying the stability of the 

systems and further displaying no abnormal nature 

throughout the simulations, figure 7B. 

 

Figure 7. Graphical representation of the 

molecular dynamics simulation studies conducted 

during 30 ns. Figure 7A represents the RMSD 

profiles for the backbone atoms of four systems. 

Figure 7B demonstrates the potential energies 

plotted for each system. Both the figures 

demonstrate that the systems were well converged 

showing no aberrant behaviour. Figure 7C Binding 

pattern of reference and the Hits within the binding 

pocket of 3EQM. The Hits and reference have 

displayed a similar binding pattern. Figure 7D 

Number of intermolecular hydrogen bonds between 

protein and Hits during whole simulation. The Hits 

have demonstrated a higher number of hydrogen 

bonds. 

The binding mode analysis of the representative 

structures was assessed from the last 2 ns 

trajectories. Upon superimposition, it was observed 

that the binding mode of the Hits was in the similar 

fashion as with the reference compound, figure 7C. 

Interrogating the intermolecular interactions 

revealed that the reference molecule has produced 

hydrogen bond with the Met374 residue between 

the NH atom of the residue and N21 atom of the 

ligand with a bond distance of 2.7 Å. Met374 is the 

key residue as represented in the crystal structure. 

Hit1 formed a hydrogen bond interaction with 

Met374 residue with a bond distance of 2.4 Å. It 

was noted that the bond existed between the NH 

atom of the residue and the O21 atom of the ligand. 

Furthermore, Hit2 interacted with three hydrogen 

bonds, Thr310, Met374, and Leu477 residues, 

respectively. The NH atom Met374 joined to the 

O26 of the ligand with a bond distance of 2.2 Å. 

The O atom of Lue477 interacted with H41 atom of 

the ligand with a bond distance of 2.9Å. 

Furthermore, the O18 atom of the ligand has joined 

to HG1 atom of Thr310 residue with a distance of 

3.0 Å.On the other hand, Hit3 generated two 
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hydrogen bonds with Met374 and Thr310, 

respectively. NH atom of Met374 interacted with 

the O17 atom of the ligand with a bond length of 

1.7Å. O atom of Thr310 joined with the H37 atom 

of the ligand with a distance of 2.8 Å. Further 

details of the interactions are tabulated in table 6. 

These interaction notify that the selected Hits have 

obeyed similar binding modes and further 

generated an acceptable bond distance, figure 7C 

and figure 8. Moreover, Val370 and Cys437 held 

the Haem group as was observed in the crystal 

structure. Additionally, the number of hydrogen 

bonds was monitored throughout the simulations 

and the average number of hydrogen bonds was 

found to be, 1.4, 1.2 and 1.3, respectively for Hit1, 

Hit2 and Hit3, while the reference has represented 

only an average of 0.2. This demonstrates that the 

inhibitors have displayed more hydrogen bonds 

than the reference molecule, figure 7D. 

 

Figure 8. Hydrogen bond interactions and the 

binding pattern of the reference and the Hits. 

Green dashed lines represent the hydrogen bond 

interaction. The corresponding 2D structures of the 

Hit are represented in purple box. 

Table 6. Comprehensive intermolecular 

interactions between the ligands (reference and 

Hits) and the protein.  

Na
me 

Hydrog

en 

bonds 

Van der 

Walls 
interacti

ons 

π -

Sigma 
interacti

ons 

Alkyl/ π 

–alkyl 
interacti

ons 

π-

sulphur 
interacti

ons 

Ref 

(A) 

Met37
4 

Trp224 

Ala306 

Thr310 

Val313 

His480 

Val370 

Cys437 

Hit1 
(B) 

Met37
4 

Ala307 

Thr310 

Val370 

Leu372 

-- 

Val313 

Val369 

Leu477 

Met374 

- 

Ile395 

Hit2 

(C) 

Met37

4 

Thr310 

Leu477 

Ala306 Val370 

Val370 

Leu477 

Met374 

Hit3 
(D) 

Met37
4 

Thr310 

-- Val370 

Val313 

Val375 

-- 

 

3.6 Binding free energy analysis  

Binding free energy calculations conducted after 

the MD simulations is a time-demanding step, 

which considers the fluctuations that occur within 

the protein and the ligand conformation for 

securing an appropriate lodging of the ligand 

within the binding pocket [58]. Thus, to validate 

the binding modes of the protein - ligand complex, 

a series of calculations have been computed using 

MM/PBSA [52] [53].  The generated results have 

rendered favourable ∆G values that range between 

-20 kJ/mol ~ -120kJ/mol, figure 6B. Upon 

comparing the binding energies of the reference 

compound and the Hits, it was disclosed that the 

Hit compounds have demonstrated a higher binding 

energy than the reference molecule, such as, -163.8 

kJ/mol, -193.4 kJ/mol and -185.3 kJ/mol, while that 

of the reference compound has rendered -95.82 

kJ/mol, respectively. This is indicative of the 

superior efficacy of the Hits. 

3.7 Density functional theory  

The molecular orbital energies were calculated with 

regard to the HOMO and LUMO that are liable for 

the transfer of charges in a given chemical reaction 

[59] [60] which further describes the molecules to 

be attacked by the electrophiles and nucleophiles, 

respectively [61] . Additionally, the band gap found 

between the HOMO and LUMO demonstrates the 

reactivity of the molecules corresponding to 

smaller gap being more reactive and wider gap 

implies less reactive and therefore, the molecules 

with smaller band gap were considered. For the 

current study, the MD optimized lead compounds 

along with the reference were subjected to the 

HOMO and LUMO analysis. The Hit molecules 

were selected based on the least energy gap and the 

lowest binding energies as compared to the 

reference compound, table 7. Additionally, the 

electrostatic potential maps were computed to 

probe into the structural aspects of a molecule as it 

essentially plays an important role in the receptor 
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ligand interactions and are computed for a set of 

points in the molecule. Typically, the electron 

density was plotted by the intensity of the colour 

that reflects the characteristic feature of a molecule. 

Subsequently, the red colour refers to the high 

negatively charged region and thus corresponds to 

high charge accumulation and the blue represents 

the charge depletion and is positively charged 

region. The intermediate colours, such as orange, 

yellow and green demonstrate the charges mid-way 

between both the extremes. The order of the colour 

magnitude can be demonstrated as  

Highly negative ---- red < orange < yellow < green 

< blue ---- highly positive 

Reviewing the electron map of the reference 

compound reveals that the molecule has three 

highly negative points located at N4, N5 and N21, 

while the highly positive points were found 

between H2, H7, H8 and H12. The highly 

electronegative N21 participated in interacting with 

the protein Met374 residue as hydrogen bond 

interaction. Hit1 has displayed five electronegative 

features; however, O21 was involved in the 

hydrogen bond interactions with the Met374. 

Furthermore, the two benzene rings that 

represented an intermediate colour code, that are 

present in the Hit1 were found to be involved in 

the π-interactions. Majority of the hydrogens have 

represented to be electropositive. In the Hit2, the 

electro negative O26 and electro positive O18 and 

H41 have involved in the hydrogen bond 

interactions. The atoms that exhibited the 

intermediate colour codes formed additional bonds. 

Similarly, in the Hit3, the highly negative O17 and 

the highly positive H37 have been found to be 

involved in the hydrogen bond interactions, while 

the benzene rings have been involved in the π 

interactions. Furthermore, the Molecular 

Electrostatic Potential maps, (MEPs), figure 9, 

states that the O atom present towards the 

methionine residues are crucial in forming the 

hydrogen bond interaction and thus inhibiting the 

aromatase. Moreover, it can also be deduced that 

the lead molecules have higher number of reactive 

groups as compared with the reference molecule, 

making them the potential drug candidates.   

Table 7. Binding free energies and the energy gap 

∆E (band gap) between the reference and the Hit 

compounds. 

Name 
HOMO 

(eV) 

LUMO 

(eV) 

Band Gap 

ΔE (eV) 

Average 

Binding 

Energy 

(kJ/mol) 

Hit1 -0.169 -0.097 0.072  

-163.8 

Hit2 -0.199 -0.102 0.096 
 

-193.4 

Hit3 -0.204 -0.097 0.106 
 

-185.3 

Refere
nce 

-0.202 -0.088 0.113 
 

-95.82 

 

 

 

Figure 9.  Molecular electrostatic potential (MEPs) 

maps of the reference and the Hits. 

4 Discussion 

Several hormones display a neuroendocrine activity 

and correspondingly influence the seizures more 

specifically; this can be noticed with testosterone, 

oestrogen, progesterone. Particularly, the estrogens 

are epileptogenic as they influence the neural 

membrane excitability and also reduces the seizure 

threshold [62] [63] [64]. Additionally, in both men 

and women reproductive and endocrine disabilities 

are commonly seen associated [65] [66]. These 

reports affirm the relationship associated between 

hormones and seizures. Additionally, reports exist 

that prove the antiepileptic nature of aromatase 

inhibitors, besides serving as effective breast 

cancer drugs [13]. We therefore aimed at 

identifying the lead anti-aromatase candidates that 

can simultaneously act against epilepsy. 

For the current investigation, the pharmacophore 

model was generated from a variety of known 

inhibitors, which could act simultaneously both as 

breast cancer inhibitors and as antiepileptic drugs. 

For this reason, the ideal possibility of developing 

the new drugs is through the ligand-based drug 

designing approach. With this pursuit a 

pharmacophore model, Hypo1 was generated 
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which exhibited 2HBA, 1HyP and 1RA features. 

Since the model displayed greater correlation 

values, least total cost value, lower RMSD, the 

obtained model was considered the best 

prospective model that was then subjected to 

validation process such as Fischer‘s randomization, 

test set and decoy set methods. The three validation 

methods ensured Hypo1 could efficiently segregate 

between the active and the inactive inhibitors. The 

effectiveness of the model was reaffirmed by its GF 

value [57]. By taking Hypo1 as the 3D query, the 

database screening has been performed and 68 

prospective Hits were selected after subjecting to 

ADMET and Lipinski‘s Rule of Five. Based upon 

the highest dock score values and the hydrogen 

bond interaction with the pivotal amino acid 

residues present within the active sites, the 

preferred molecules were forwarded to molecular 

dynamics simulations to evaluate the stability of 

the systems and further their binding energies were 

computed. MD results showed that the lead 

systems were stable throughout the simulations 

with no major aberrations, projecting the lead 

molecules to be ideal prospective drug candidates. 

Furthermore, in order to quantify their reactive 

groups, the DFT and MEPs were conducted. 

Subsequently, their orbital energies were assessed 

to ensure the potency of the inhibitors, with the 

HOMO and the LUMO energy gap. Finally, three 

Hit molecules, Hit1, Hit2, and Hit3 were 

determined as the lead molecules, which satisfied 

all the necessary pharmacophore features of the 

Hypo1 and could be considered as the prospective 

potential aromatase inhibitors. The identified Hit 

compounds were retrieved form the AXN database. 

The selected lead compounds could also be marked 

as probable antiepileptic drugs with increased 

efficacy, because the lead compounds were chosen 

based upon the reference molecule with an IC50 

value of 0.5 nmol/L This value is far lower than the 

values of the current AIs that are antiepileptic in 

nature, thereby, projecting the identified Hit 

molecules as the prospective drug candidate for 

both the diseases. 

5 Conclusion 

Owing by the strong literature evidence that 

supports the establishment of the aromatase 

inhibitors as antiepileptic drugs, the current study 

successfully identifies three lead candidates from 

the large databases. These candidates have shown 

greater binding similarity with that of the reference 

and strong molecular interactions with the key 

residues as compared with the reference compound. 

Additionally, they displayed stable MD profiles and 

rendered lower energy gaps and binding free 

energies than the reference compounds. Further, the 

identified Hits may be tested for their efficacy in 

some known models as published earlier [67] [68] 

as these models are reported to be appropriate for 

studying the effect of aromatase inhibitors that 

could possibly ameliorate the postmenopausal 

breast cancer cases. Taken together, we suggest that 

the identified Hits might be effective against breast 

cancer and further epilepsy. 
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