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The ubiquitin proteasome system is a key regulator of many

biological processes in all eukaryotes. This mechanism employs

several types of enzymes, the most important of which are the

ubiquitin E3 ligases that catalyse the attachment of polyubiquitin

chains to target proteins for their subsequent degradation by the

26S proteasome. Among the E3 families, the SCF is the best

understood; it consists of a multi-protein complex in which the

F-box protein plays a crucial role by recruiting the target

substrate. Strikingly, nearly 700 F-box proteins have been

predicted in Arabidopsis, suggesting that plants have the

capacity to assemble a multitude of SCF complexes, possibly

controlling the stability of hundreds of substrates involved in a

plethora of biological processes. Interestingly, viruses and even

pathogenicbacteriahave also foundways tohijack the plant SCF

and to reprogram it for their own purposes.
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Introduction
Regulation of protein stability through the ubiquitin

proteasome system (UPS) is an important mechanism

that underlies numerous cellular and organismal pro-

cesses [1]. Degradation via the UPS is a two-step process:

the protein is first tagged by covalent attachment of

ubiquitin and subsequently degraded by a multicatalytic

protease complex called the 26S proteasome. The ubi-

quitin conjugation pathway involves several classes of

enzymes, the most interesting being the ubiquitin protein

ligases (or E3s) that are in charge of the substrate speci-

ficity. To date, several hundred different E3s have been

predicted in sequenced metazoan and plant genomes, on

the basis of commonly shared structural motifs. These

E3s fall into different families, among which the SCF

(SKP1-CUL1-F-box) is the largest and best characterised.
www.sciencedirect.com
The SCF complex is composed of four major subunits:

Cullin 1 (CUL1), SUPPRESSOR OF KINETOCHORE

PROTEIN 1 (SKP1), RING-BOX 1 (RBX1)/REGULA-

TOR OF CULLINS 1 (ROC1) and an F-box protein

([2�]; Figure 1). Structure–function studies in yeast and

mammals have demonstrated that CUL1 functions as a

scaffold in assembling the different subunits of the

complex. Thus, CUL1 interacts at its carboxyl terminus

with the RING-domain protein RBX1 (forming the core

catalytic domain) and, at its amino terminus, with the

adaptor protein SKP1, which links to one of the several

F-box proteins. F-box proteins, in addition to the loosely

conserved F-box motif that binds to SKP1, usually carry

one of a variety of typical protein–protein interaction

domains that confers substrate specificity to the SCF

complexes. This review emphasizes important recent

research on the function of F-box proteins in various

aspects of plant biology (Table 1).

Dynamic assembly of a multiprotein complex
In plants, the so-called CUL1 (e.g. Arabidopsis AtCUL1)

is phylogenetically distant from yeast or metazoan CUL1

members and falls into a separate phylogenetic clade [3].

Unlike vertebrates, but like Caenorhabditis and Drosophila,

Arabidopsis also encodes a large family of Arabidopsis
SKP1-LIKE (ASK) proteins [4]. Among the 21 members

of this family, ASK1 and ASK2 seem to play prominent

roles in plant SCF complexes. This is supported by the

fact that they are the most conserved SKP1-related pro-

teins with respect to yeast and human counterparts [5]. In

addition, they interact with almost all of the Arabidopsis F-

box proteins tested, which is not the case for other ASKs

[5]. Finally, ASK1 and ASK2 are essential for embryogen-

esis [6], as is AtCUL1 [3]. Nevertheless, the loss-of-func-

tion phenotype of AtCUL1 is more dramatic than that of

the ask1 ask2 double mutant, and hence other ASKs might

also contribute to SCF function during embryogenesis.

Strikingly, the Arabidopsis genome encodes about 700 F-

box proteins [7]. This number is significantly higher than

that in other eukaryotes for which full genome sequences

are available, and indicates that SCF-dependant ubiqui-

tylation is a major route for selective protein degradation

in plants.

AtCUL1 function is also regulated by the covalent linkage

of a ubiquitin-like protein, called RELATED TO UBI-

QUITIN1 (RUB1)/NEURAL PRECURSOR CELL

EXPRESSED, DEVELOPMENTALLY DOWNRE-

GULATED 8 (NEDD8) [8]. Arabidopsis encodes three

RUB-like proteins, two of which (RUB1 and RUB2, are

essential and regulate diverse processes throughout plant
Current Opinion in Plant Biology 2006, 9:631–638
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Figure 1

Model for SCF-dependent ubiquitylation and subsequent protein degradation. Free CUL1 interacts with CAND1. Upon RUB modification, CUL1

dissociates from CAND1. This allows the association of SKP1 (or ASK1/2 in Arabidopsis) and the F-box protein, which might already exist as an

heterodimer before entering the complex. At this stage, the SCF is assembled. Additional important regulations (illustrated by a red star) are required

for the SCF interact with its substrates. In most described cases, it is the substrate that is modified at the post-translational level, but additional

regulations might operate; for example, the binding of auxin to the F-box protein in plants. Conjugation of ubiquitin to the protein target also

requires two other enzymes: the ubiquitin-activating enzyme (E1) forms a high-energy thioester intermediate (E1-S�Ubi) that is then trans-esterified to

one of the several ubiquitin-conjugating enzymes (E2). The transfer of ubiquitin from E2-S�Ubi to an e-NH2 group of an internal lysine residue

in the target protein substrate is mediated by the SCF. A polyubiquitin chain is synthesized by successively adding ubiquitin moieties to the

previously conjugated ubiquitin molecule. Multiubiquitylated proteins are then recognized by the 26S proteasome and proteolyzed into peptides, and

ubiquitin is recycled through the action of de-ubiquitylating enzymes (not represented). As the protein target is usually either an activator (A) or a

repressor (R) of a signalling pathway, its degradation switches the pathway either OFF or ON. What happens to the SCF after the substrate is

polyubiquitylated is poorly understood. It is possible that RUB-deconjugation by the CSN5 subunit of the COP9 signalosome triggers the disassembly

of the complex and thus resets the mechanism.
development [9]. RUB can be removed from CUL1 by the

peptidase activity of the COP9-signalosome (CSN) [10].

Both the RUB conjugation and deconjugation pathways

are important for optimal activity of the SCF, and it is

thought that this modification controls the assembly and

thus the activity of the complex (Figure 1). Indeed, it has

been proposed that RUB1/NEDD8-modification of CUL1

dissociates CAND1 (CULLIN-ASSOCIATED AND

NEDDYLATION-DISSOCIATED1), an inhibitor of

the SCF, and consequently promotes the binding of

SKP1 and an F-box protein to CUL1 [8]. Arabidopsis
Current Opinion in Plant Biology 2006, 9:631–638
CAND1, which is encoded by a single gene, interacts

preferentially with unmodified CUL1 and is also necessary

for optimal SCF activity [11,12].

F-box proteins in plant hormone response
pathways
Indole-3-acetic acid (IAA or auxin) is involved in many

aspects of plant development and was the first phytohor-

mone whose signalling pathway was shown to involve an

SCF complex. The F-box protein TRANSPORT INHI-

BITOR RESPONSE 1 (TIR1) is part of an SCF complex
www.sciencedirect.com
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Table 1

Overview of plant and microbial F-box proteins, their substrates and known biological functions.

F-box proteins Motif Demonstrated or

putative substrates

Regulation Biological process References

TIR1 LRR Aux/IAA Auxin binding Auxin signalling [13,17��,18��,19�,39]

AFB1-3

COI1 LRR Histone deacetylase? ? JA signalling [21,22,63]

SLY1 – DELLAs Phosphorylation?

Interaction with the GA-

activated receptor?

GA signalling [23–26,29,30,31��]

SNE

GID2

EBF1 and EBF2 LRR EIN3 ? Ethylene signalling [32–34]

TLP9 Tubby domains ? ? ABA signalling? [64]

EID1 Leucine-zipper ? ? phyA signalling [42,43]

AFR Kelch repeats ? ? [44]

ZTL LOV/PAS domain

and Kelch repeats

TOC1 ? Circadian clock [45,47–49,50�,65]

FKF1 CDF1 ?

LKP2 ? ?

UFO – ? ? Floral development [35–37]

FIM

MAX2/ORE9 LRR ? ? Shoot branching [38,66]

Leaf senescence

ARABIDILLO1 and

ARABIDILLO2

Arm-repeats ? ? Lateral root

development

[40]

CEGENDUO – ? ? [41]

SFB/SLF – S-RNAses? ? Self-incompatibility [51,52��,53,55]

SKP2A LRR E2Fc? Phosphorylation Cell cycle [67]

SON1 – ? ? Defence response [68]

CLINK LxCxE motif pRB? ? Host DNA replication [58]

P0 – ? ? Host RNA silencing [59�]

VirF – VIP1 and VirE2 ? T-DNA uncoating [60,61�]

(–) indicates that the F-box protein does not contain a recognisable protein–protein interaction domain. Putative substrates, which have at least been

shown (in yeast or in vitro) to physically interact with their respective F-box proteins, are indicated in italics, whereas demonstrated substrates are

written in uppercase.
that mediates auxin-dependant transcriptional control by

targeting certain AUX/IAA proteins for ubiquitin-depen-

dant degradation [13]. AUX/IAA proteins serve as repres-

sors of auxin action by binding to and blocking the

AUXIN RESPONSE FACTOR (ARF) transcription

factors, which activate auxin-inducible genes [14].

Although auxin is known to stimulate the binding of

Aux/IAA proteins by the SCFTIR1 complex [13,15], the

molecular details of this mechanism were unknown until

recently. Pharmacological and biochemical studies

showed that post-translational modifications of the

Aux/IAA proteins, such as phosphorylation (a modifica-

tion occurring on many SCF substrates), are not involved

in this mechanism [15,16]. The major breakthrough was

achieved, however, when two different laboratories

demonstrated that auxin binds to TIR1 and, as a con-

sequence, promotes the interaction of SCFTIR1 with the

Aux/IAA proteins [17��,18��]. This finding is very impor-

tant because it establishes TIR1 as an auxin receptor.

Furthermore, it suggests that F-box proteins have the

capacity to bind directly to small signalling molecules

and that this binding can modify SCF activity.
www.sciencedirect.com
Nevertheless, we still do not know which protein domain

of TIR1 binds to auxin and how this binding promotes

SCFTIR1 interaction with the Aux/IAA proteins.

TIR1 loss-of-function mutants exhibit only a weak auxin-

resistance phenotype, and so it is likely that other similar

auxin receptors exist. Indeed, three additional TIR1-

related F-box proteins, called AUXIN SIGNALLING

F-BOX PROTEIN 1–3 (AFB1–3), that also interact with

Aux/IAA proteins in an auxin-dependant manner have

been identified [19�]. Genetic evidence indicates that all

four F-box proteins act redundantly to mediate auxin

responses during embryogenesis and throughout plant

development. Interestingly, recent work has also shown

that expression of these F-box proteins is repressed by

bacterial flagellin through a mechanism that involves a

microRNA (miRNA) [20�]. This evidence indicates that

downregulation of auxin signalling is part of a pathogen-

induced immune response [20�].

SCF complexes also regulate other phytohormones sig-

nalling pathways, including the jasmonate, gibberellin
Current Opinion in Plant Biology 2006, 9:631–638



634 Cell biology
and ethylene pathways. Regulation of jasmonate signal-

ling involves the Arabidopsis F-box protein CORONA-

TINE INSENSITIVE1 (COI1), which is part of an SCF

complex [21,22]. At present, COI1’s protein target(s)

remain(s) unknown. Knowledge is more advanced for

the gibberellin (GA) signalling pathway, which is regu-

lated in Arabidopsis by the F-box proteins SLEEPY1

(SLY1) and SNEEZY (SNE) [23–25] and in rice by the

F-box protein GID2 [26]. Like TIR1, these F-box pro-

teins are involved in the degradation of negative regula-

tors of phytohormones responses. In the GA response,

these negative regulators are the DELLA proteins, which

belong to the GRAS superfamily of putative transcrip-

tional regulators that directly or indirectly repress the

expression of GA-induced genes [27]. DELLAs seem to

modulate plant growth in response to diverse environ-

mental signals and, in particular, can restrain plant growth

in adverse conditions [28�]. Conversely, GA stimulates

plant growth by promoting the destruction of DELLAs.

In contrast to auxin signalling, the degradation of

DELLA proteins appears to be regulated by phosphor-

ylation [26,29,30]. Bioactive GAs do not bind to the

F-box proteins directly but rather bind to a recently

identified receptor, GIBBERELLIN INSENSITIVE

DWARF1 (GID1) [31��]. Interestingly, GID1 interacts

with the rice DELLA-related protein SLENDER

RICE1 (SLR1) in a GA-dependent manner and renders

SLR1 degradable by the SCFGID2 proteasome pathway.

However, the molecular details of these interactions are

not known and the role of DELLA phosphorylation in

this model is unclear.

In the signalling pathway for the gaseous plant hormone

ethylene, two Arabidopsis F-box proteins, EIN3 BIND-

ING F-BOX PROTEIN 1 (EBF1) and EBF2, target the

transcriptional activator ETHYLENE INSENSITIVE3

(EIN3) for degradation [32–34]. EIN3 is expressed con-

stitutively but is unable to accumulate because it is

subjected to permanent proteolysis mediated by EBF1

and EBF2. EIN3 becomes stabilised and acts on its target

promoters only upon perception of ethylene. It is worth

noting that SCF-dependent proteolysis in ethylene sig-

nalling differs significantly from that in the responses to

auxin and GA in that a transcription activator (EIN3)

instead of repressors (Aux/IAA and DELLA proteins,

respectively) is degraded. Moreover, proteolysis is

switched off after ethylene perception whereas it is

activated in response to auxin and GA, probably by the

binding of the hormones to their receptors.

F-box proteins in lateral root formation
Several F-box proteins have been implicated in organ

formation and development. These proteins include

UNUSUAL FLORAL ORGANS (UFO) and FIM-

BRIATA (FIM), which control multiple aspects of floral

development [35–37], and MAX2, which represses shoot

lateral branching [38]. As auxin plays a pivotal role in
Current Opinion in Plant Biology 2006, 9:631–638
almost every aspect of plant development, it is perhaps

not surprising that a mutant that has a defect in the

Arabidopsis F-box protein TIR1 is deficient in lateral root

formation [39]. Recently, other classes of Arabidopsis
F-box proteins were also shown to be involved in lateral

root formation. Thus, two Armadillo-related F-box

proteins (called ARABIDILLO-1 and ARABIDILLO-2)

promote root branching by a mechanism that does not seem

to involve modulation of auxin perception or response [40].

Finally, whereas loss of TIR1 or ARABIDILLO-1 and

ARABIDILLO-2 function reduces lateral root formation,

a mutation in another F-box gene, CEGENDUO, leads to an

increase in lateral root production [41], suggesting a com-

plex interplay of degradation events in lateral root

development.

F-box proteins in light signalling and clock
control
F-box proteins have been implicated in phytochrome A

(phyA)-dependant light signalling. Mutants that have

defects in the F-box-protein encoding gene EMPFIN-
DLICHER IM DUNKELROTEN LICHT (EID1) exhibit

increased far-red light sensitivity and, thus, it has been

proposed that an SCFEDI1 E3 targets positive phyA

signal transducers(s) for proteolysis [42]. Moreover,

EID1 modulates phyA-dependant light responses during

all stages of plant development [43]. ATTENUATED

FAR-RED RESPONSE (AFR) is another F-box protein

that is involved in phyA-dependant signalling [44].

Mutations in EID1 lead to hypersensitivity to far-red

light whereas, conversely, reduction of AFR protein

by RNA interference leads to far-red light hyposensitiv-

ity. Thus, the AFR protein might mediate the degrada-

tion of a repressor of phyA signalling. The identification

of protein targets of both EID1 and AFR will certainly

help to unravel their complex interplay in light

responses.

The role of SCF-dependant protein degradation is better

understood in the control of the photoperiod. The circa-

dian clock allows plants to measure day length and thus to

control various physiological and developmental pro-

cesses, such as flowering time. The F-box protein ZEI-

TLUPE (ZTL) was the first UPS component to be

implicated in the plant circadian system [45] and was

shown to assemble into an SCF complex in vivo [46].

ZTL is involved in the dark-dependant degradation of

TIMING OF CAB EXPRESSION 1 (TOC1) [47], a

component of the oscillator of the circadian clock.

TOC1 promotes transcription of CIRCADIAN CLOCK-

ASSOCIATED 1 (CCA1) and LATE ELONGATED

HYPOCOTYL (LHY), two other core components of

the central oscillator of the circadian clock. To explain

ZTL’s function in periodicity control, however, it seems

likely that ZTL has substrates in addition to TOC1 [48].

ZTL belongs to a small family of three genes, which also

includes the FLAVIN-BINDING, KELCH-REPEAT,
www.sciencedirect.com
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F-box 1 (FKF1) and the LOV KELCH PROTEIN2

(LKP2). All three proteins contain an amino-terminal

LIGHT, OXYGEN OR VOLTAGE (LOV) domain, a

central F-box, and Kelch repeats in the carboxy-terminal

domain. Interestingly, the LOV domain of FKF1 binds the

chromophore flavine mononucleotide, and it has been

suggested that FKF1 might function as a periodic blue-

light photoreceptor [49]. Moreover, FKF1 was found to

control the daytime expression of CONSTANS (CO),

which is crucial for photoperiod-dependant flowering

[49]. However, the mechanism by which the temporal

expression of CO is controlled by FKF1 remained

unknown until recently. New data now indicate that

FKF1 targets CYCLING DOF FACTOR 1 (CDF1),

a Dof (DNA binding with one finger) transcriptional

repressor of CO [50�].

F-box proteins in pollen recognition and
rejection
Self-incompatibility interactions in Solanaceae, Scrophu-

lariaceae and Rosaceae, which prevent inbreeding, are

controlled by pistil-expressed S-RNases that act as cyto-

toxins to inhibit the growth of pollen that has a matching

S-allele [51]. Strikingly, clusters of F-box genes known as

SFB or SLF (S-linked F-box genes) have recently been

found close to the S-RNase genes in Petunia, and these

genes have been proposed to control specificity on the

pollen side [52��]. A role for an F-box protein, AhSLF-S2,

in self-incompatibility has also been demonstrated in

Antirrhinum [53]. AhSLF-S2 is able to interact not only

with an Antirrhinum pollen-specific ASK1-like protein

[54] but also directly with its putative substrates: the S-

RNases [55]. A current model therefore proposes that the

F-box proteins specifically inhibit non-self S-RNases by

targeting them for ubiquitin-dependant degradation.

However, this model is not consistent with the fact that

the Antirrhinum AhSLF-S2 protein also binds self-S-

RNase, at least in vitro [55], or with the finding that an

slf loss-of-function mutant in Prunus avium is self-com-

patible [56]. According to the model, the absence of the

F-box should lead to universally incompatible pollen.

Thus, additional research is needed to elucidate the

molecular details of this system.

F-box proteins encoded by plant pathogenic
microbes
It is well established that animal viruses manipulate the

UPS to favour their infection [57]. In some cases, viruses

directly encode E3 components, whereas in others, host

E3s are redirected to serve viral purposes. Interestingly,

two plant viruses have been found to encode F-box

proteins. The Faba bean necrotic yellow virus protein

CELL CYCLE LINK (CLINK) contains an F-box motif

and binds to MsSKP1, an alfalfa SKP1 homologue [58].

The function of CLINK has not yet been established but

it is suspected to trigger host DNA replication by target-

ing a RETINOBLASTOMA RELATED PROTEIN
www.sciencedirect.com
(RBR) protein. Interestingly, an F-box motif was also

recently found in the polerovirus P0 protein, a suppressor

of gene silencing [59�]. Mutations in the F-box abolish

P0’s interaction with the SKP1-related ASK1/2 and

reduce its silencing suppressor activity, thus diminishing

virus pathogenicity. Consistently, SKP1 knockdown in

Nicotiana benthamiana conferred higher plant resistance to

polerovirus infection. An interesting hypothesis is that P0

is part of an SCF complex that targets a component of the

host posttranscriptional gene-silencing machinery.

No less smart than viruses, pathogenic bacteria have also

found ways to re-design SCF complexes. The first exam-

ple came from Agrobacterium tumefaciens, which leads to

the formation of crown gall tumors. This bacterium

encodes an F-box protein called VirF that functions

within the plant cell and where it interacts with plant

SKP1-related ASK1/2 proteins [60]. Although VirF is

specifically required during the infection process, its

mechanism of action has remained uncharacterised. How-

ever, a recent report provides strong evidence that VirF is

involved in turnover of both the host protein VIP1 and the

bacteria-encoded protein VirE2, and thus might contri-

bute to the uncoating of the T-DNA before its integration

into the plant genome [61�]. The fact that VirF is required

for some but not all plant species is still intriguing. VirF

will very likely not be the sole example of this kind, as a

glimpse into other bacterial genomes reveals additional

putative F-box proteins. One example is the soil patho-

genic bacterium Ralstonia solanacearum, which encodes

several F-box proteins, some of which are translocated

into the plant cell through the type III secretion system (S

Genin, N Peeters, pers. comm.).

Conclusions and perspectives
If the nearly 700 predicted Arabidopsis F-box proteins [7]

all form SCF complexes, it is evident that we are still very

far from having an integrated picture of their functional

repertory. Conditional mutants that affect core compo-

nents of the SCF, such as the recently described auxin
response 6-3 (axr6-3) allele of AtCUL1 provide further

evidence that novel pathways that are regulated by SCFs

remain to be characterized [62]. Elucidation of these

pathways, at the molecular level, will certainly keep more

than one laboratory busy in the coming years. Such a goal

will be challenging, however, for at least two reasons.

First, many F-box proteins are encoded by large gene

families, which makes genetic approaches difficult

because of functional redundancy. Second, in many cases,

the protein target of an SCF requires post-translational

modification(s) (often phosphorylation) in order to be

recognised. Even worse, as reported for TIR1, the SCF

itself might bind directly to different signalling molecules

in order to interact with its substrate(s). But never fear,

our guess is that we will learn much more in the near

future about novel F-box protein targets and novel sig-

nalling pathways in which they are involved, as well as
Current Opinion in Plant Biology 2006, 9:631–638
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about SCF regulation by docking proteins and even small

metabolic compounds.
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